🔄

CSV Data Type Converter

Convert data types in CSV - Transform CSV column values to numbers, booleans, dates with automatic type detection and cleaning

Data Tools
Loading tool...

How to Use CSV Data Type Converter

How to Use CSV Data Type Converter

Convert and clean data types in your CSV files with our intelligent CSV Data Type Converter. Automatically detect and convert strings to numbers, booleans, dates, and more. Perfect for data cleaning, preparing CSV files for database import, or standardizing data formats.

Quick Start Guide

  1. Paste CSV Data: Copy your CSV content and paste it into the input area
  2. Auto-Detection: Data types are automatically detected from your data
  3. Review Types: Check the suggested data types for each column
  4. Adjust Types (optional): Change any column's target data type using the dropdown
  5. Click Convert Types: Apply the conversions
  6. Copy Result: Click "Copy Output" to copy the cleaned CSV

Understanding Data Type Conversion

What is CSV Data Type Conversion?

CSV data type conversion transforms values in CSV columns from one format to another. This includes cleaning currency symbols from numbers, standardizing boolean values, formatting dates consistently, and removing special characters that prevent proper data import.

Common Conversions:

Number Conversion:

  • Removes: $, commas, % symbols
  • $1,200.00 → 1200
  • 15% → 15
  • $99.99 → 99.99

Boolean Conversion:

  • Standardizes to true/false
  • yes/no → true/false
  • 1/0 → true/false
  • Y/N → true/false

Date Conversion:

  • Converts to ISO format (YYYY-MM-DD)
  • 01/15/2024 → 2024-01-15
  • Jan 15, 2024 → 2024-01-15
  • 2024-1-15 → 2024-01-15

String (No Conversion):

  • Keeps original value
  • Useful for text columns, IDs, names

Common Use Cases

1. Clean Price Data for Analysis

Before:

product,price,quantity
Laptop,$1200.00,5
Mouse,$29.99,150

After (price → number):

product,price,quantity
Laptop,1200,5
Mouse,29.99,150

2. Standardize Boolean Flags

Before:

user,active,verified,premium
Alice,yes,1,true
Bob,no,0,false

After (all → boolean):

user,active,verified,premium
Alice,true,true,true
Bob,false,false,false

3. Format Dates Consistently

Before:

name,signup_date,last_login
Alice,01/15/2024,2024-02-20
Bob,2024-1-20,02/22/2024

After (dates → YYYY-MM-DD):

name,signup_date,last_login
Alice,2024-01-15,2024-02-20
Bob,2024-01-20,2024-02-22

4. Remove Percentage Symbols

Before:

month,growth,margin,discount
Jan,5.5%,45%,10%
Feb,8.2%,48%,15%

After (% columns → number):

month,growth,margin,discount
Jan,5.5,45,10
Feb,8.2,48,15

5. Clean Mixed Data Types

Before:

order,total,paid,shipped
1001,$1500.00,yes,2024-01-15
1002,850.50,no,01/20/2024

After (total → number, paid → boolean, shipped → date):

order,total,paid,shipped
1001,1500,true,2024-01-15
1002,850.5,false,2024-01-20

6. Prepare Data for Database Import

Before (Excel export):

id,revenue,active,created
1,$5000,TRUE,1/1/2024
2,$6500,FALSE,1/2/2024

After (cleaned for PostgreSQL):

id,revenue,active,created
1,5000,true,2024-01-01
2,6500,false,2024-01-02

Features

  • Automatic Type Detection: Intelligently detects numbers, booleans, dates, strings
  • Smart Number Cleaning: Removes $, commas, % symbols
  • Boolean Standardization: Converts yes/no, 1/0, Y/N to true/false
  • Date Formatting: Standardizes dates to ISO format (YYYY-MM-DD)
  • Column-by-Column Control: Convert specific columns, leave others unchanged
  • Type Suggestions: Shows recommended types based on data
  • Real-Time Statistics: Shows conversion count
  • CSV Format Support: Handles quoted values and special characters
  • One-Click Copy: Copy converted CSV instantly
  • Privacy Protected: All conversion happens locally in your browser

Data Type Detection

The tool automatically analyzes your data and suggests types:

Detected as Number:

  • $1,200.00 (currency with symbols)
  • 15% (percentage)
  • 1234 (plain number)
  • 99.99 (decimal)

Detected as Boolean:

  • true/false
  • yes/no
  • 1/0
  • Y/N

Detected as Date:

  • 2024-01-15 (ISO format)
  • 01/15/2024 (US format)
  • 15-01-2024 (other formats)
  • Jan 15, 2024 (text dates)

Detected as String:

  • Text that doesn't match other patterns
  • Mixed alphanumeric (ABC123)
  • Names, descriptions, IDs

Conversion Behavior

Number Conversion:

  1. Remove currency symbols ($, €, £, ¥)
  2. Remove thousands separators (commas)
  3. Remove percentage symbols (%)
  4. Parse to decimal number
  5. Keep original if parsing fails

Boolean Conversion:

  1. Convert to lowercase
  2. Map common values:
    • true: true, yes, y, 1
    • false: false, no, n, 0
  3. Keep original if not recognized

Date Conversion:

  1. Parse various date formats
  2. Output ISO format (YYYY-MM-DD)
  3. Keep original if parsing fails

String (Auto):

  • No conversion applied
  • Original value preserved

Technical Details

Type Detection Algorithm:

  1. Check if value matches boolean pattern (yes/no, true/false, 1/0)
  2. Check if value matches number pattern ($, commas, %, digits)
  3. Check if value matches date pattern (common date formats)
  4. Default to string if no pattern matches

Conversion Process:

  1. Parse CSV and extract headers
  2. Analyze first data row for type detection
  3. Suggest data types for each column
  4. User adjusts types as needed
  5. Apply conversions to all data rows
  6. Output cleaned CSV

Performance:

  • Processes thousands of rows instantly
  • Efficient column-by-column conversion
  • O(n*m) where n = rows, m = columns

Best Practices

  1. Review Suggested Types: Always check auto-detected types before converting
  2. Test with Sample: Try with a few rows first to verify conversions
  3. Keep Backups: Save original CSV before converting
  4. Validate Results: Check output for unexpected conversions
  5. Use Auto for Text: Leave text columns (names, descriptions) as "Auto"
  6. Date Consistency: Ensure dates are in recognizable formats

Cleaning Common Data Issues

Currency Formatting:

Problem: $1,200.00 can't be imported as number
Solution: Convert to number → 1200

Inconsistent Booleans:

Problem: Mix of yes/no, true/false, 1/0
Solution: Convert to boolean → standardized true/false

Date Format Variations:

Problem: Mix of 01/15/2024, 2024-01-15, Jan 15 2024
Solution: Convert to date → 2024-01-15 (ISO)

Percentage Values:

Problem: 15% can't be used in calculations
Solution: Convert to number → 15

Database Import Preparation

PostgreSQL:

  • Numbers: No symbols, decimal point
  • Booleans: true/false (lowercase)
  • Dates: YYYY-MM-DD or YYYY-MM-DD HH:MM:SS
  • Strings: Any text

MySQL:

  • Numbers: No symbols, decimal point
  • Booleans: 1/0 or true/false
  • Dates: YYYY-MM-DD
  • Strings: Any text

Excel:

  • Numbers: No $ or commas (Excel adds them)
  • Booleans: TRUE/FALSE (uppercase) or 1/0
  • Dates: YYYY-MM-DD or M/D/YYYY
  • Strings: Any text

Troubleshooting

Problem: Numbers not converting correctly

Solution:

  • Check for non-standard currency symbols
  • Verify decimal separator is period (.)
  • Ensure no extra spaces around numbers
  • Remove any alphabetic characters (like "USD")

Problem: Dates not converting

Solution:

  • Use recognizable formats (YYYY-MM-DD, MM/DD/YYYY)
  • Avoid ambiguous formats (is 01/02/2024 Jan 2 or Feb 1?)
  • Check for typos in dates
  • Ensure dates are valid (no Feb 30)

Problem: Booleans not standardizing

Solution:

  • Check for typos (yse instead of yes)
  • Ensure consistent capitalization
  • Remove extra spaces
  • Use recognized values (yes/no, true/false, 1/0)

Problem: Type detection wrong

Solution:

  • Manually select correct type from dropdown
  • Check if first row is representative of column
  • Some columns may need manual adjustment

Problem: Data lost during conversion

Solution:

  • Conversion failures preserve original value
  • Check output for unconverted values
  • Verify input data format matches expected type

Advanced Tips

Tip 1: Selective Conversion

Only convert columns that need it:

  • Keep IDs as strings (even if numeric)
  • Convert only amount/price columns to numbers
  • Leave text descriptions unchanged

Tip 2: Multiple Conversions

Process data in stages:

  1. First: Convert all numbers
  2. Check results
  3. Then: Convert dates and booleans

Tip 3: Verify Sample Rows

Before converting large files:

  1. Copy first 10 rows
  2. Test conversion
  3. Verify output is correct
  4. Then convert full file

Tip 4: Handle Mixed Types

Some columns have mixed data:

  • Leave as "Auto" if mostly text
  • Convert to number if mostly numeric
  • Review output for unconverted values

Browser Compatibility

CSV Data Type Converter works in all modern browsers:

  • ✅ Google Chrome (recommended)
  • ✅ Mozilla Firefox
  • ✅ Microsoft Edge
  • ✅ Safari
  • ✅ Opera
  • ✅ Brave

Requirements:

  • JavaScript enabled
  • Modern browser (2020 or newer)

Privacy & Security

Your Data is Safe:

  • All data conversion happens in your browser using JavaScript
  • No data is uploaded to any server
  • No data is stored or logged
  • Works completely offline after page loads
  • No cookies or tracking
  • 100% client-side processing

Best Practices for Sensitive Data:

  1. Use the tool in a private/incognito browser window
  2. Clear browser cache after use if on shared computer
  3. Don't paste sensitive data in public/shared environments
  4. Verify HTTPS connection (look for padlock in address bar)

Quick Reference

Data Types:

  • Auto: No conversion (keeps original)
  • String: Text format (no conversion)
  • Number: Removes $, commas, %
  • Boolean: Converts to true/false
  • Date: Converts to YYYY-MM-DD

Common Conversions:

  • $1,200.00 → 1200 (number)
  • 15% → 15 (number)
  • yes → true (boolean)
  • 01/15/2024 → 2024-01-15 (date)

When to Use Each Type:

  • Number: Prices, quantities, amounts, percentages
  • Boolean: Yes/no flags, true/false states
  • Date: Dates, timestamps
  • String: Names, IDs, descriptions, text

Integration with Other Tools

After Converting:

  1. For Excel: Paste into spreadsheet
  2. For Database: Use SQL import tools
  3. For Analysis: Load into Python/R
  4. For APIs: Convert to JSON

Workflow Example:

  1. Export data from system (messy format)
  2. Convert types with this tool
  3. Rename columns with CSV Column Renamer
  4. Import to database or analysis tool

Frequently Asked Questions

Related Development Tools

Share Your Feedback

Help us improve this tool by sharing your experience

We will only use this to follow up on your feedback