CSV to SQL INSERT
Generate SQL INSERT statements from CSV data. Convert spreadsheet data to database-ready SQL queries instantly.
Data ToolsHow to Use CSV to SQL INSERT
How to Use CSV to SQL INSERT
The CSV to SQL INSERT tool transforms your CSV (Comma-Separated Values) data into SQL INSERT statements that can be executed directly in your database. Perfect for data migrations, bulk imports, and populating test databases.
Quick Start Guide
- Paste CSV Data: Copy and paste your CSV data into the input area
- Set Table Name: Enter your target database table name
- Configure Options:
- Enable "First row as column names" to use the first row as column identifiers
- Enable "Batch INSERT" to combine all rows into a single INSERT statement
- Generate: Click "Generate SQL" to create the INSERT statements
- Copy SQL: Click "Copy SQL" to copy the generated code to your clipboard
Understanding CSV to SQL Conversion
What is CSV?
CSV stores tabular data in plain text:
id,name,email,age
1,Alice,alice@example.com,28
2,Bob,bob@example.com,35
What is SQL INSERT?
SQL INSERT statements add new rows to database tables:
INSERT INTO users (id, name, email, age) VALUES (1, 'Alice', 'alice@example.com', 28);
INSERT INTO users (id, name, email, age) VALUES (2, 'Bob', 'bob@example.com', 35);
Why Convert CSV to SQL?
- Database migrations
- Bulk data imports
- Test data generation
- Populate development databases
- Backup and restore data
- Seed initial data
Common Use Cases
1. User Data Migration
Input CSV:
id,name,email,age
1,Alice Smith,alice@example.com,28
2,Bob Johnson,bob@example.com,35
Output SQL (Individual):
INSERT INTO users (id, name, email, age) VALUES (1, 'Alice Smith', 'alice@example.com', 28);
INSERT INTO users (id, name, email, age) VALUES (2, 'Bob Johnson', 'bob@example.com', 35);
Output SQL (Batch):
INSERT INTO users (id, name, email, age)
VALUES
(1, 'Alice Smith', 'alice@example.com', 28),
(2, 'Bob Johnson', 'bob@example.com', 35);
Use Case: Migrate user data from spreadsheet to database.
2. Product Catalog Import
Input CSV:
product_id,product_name,price,stock
101,Laptop,999.99,15
102,Mouse,24.99,150
Output SQL:
INSERT INTO products (product_id, product_name, price, stock) VALUES (101, 'Laptop', 999.99, 15);
INSERT INTO products (product_id, product_name, price, stock) VALUES (102, 'Mouse', 24.99, 150);
Use Case: Import product inventory into e-commerce database.
3. Sales Records
Input CSV:
order_id,customer,amount,date,status
1001,John Doe,1250.00,2024-01-15,completed
1002,Jane Smith,850.50,2024-01-16,pending
Output SQL:
INSERT INTO orders (order_id, customer, amount, date, status) VALUES (1001, 'John Doe', 1250.00, '2024-01-15', 'completed');
INSERT INTO orders (order_id, customer, amount, date, status) VALUES (1002, 'Jane Smith', 850.50, '2024-01-16', 'pending');
Use Case: Import historical sales data for reporting.
4. Test Data Generation
Input CSV:
emp_id,first_name,last_name,department,salary
501,John,Smith,Engineering,95000
502,Jane,Doe,Marketing,75000
Output SQL:
INSERT INTO employees (emp_id, first_name, last_name, department, salary) VALUES (501, 'John', 'Smith', 'Engineering', 95000);
INSERT INTO employees (emp_id, first_name, last_name, department, salary) VALUES (502, 'Jane', 'Doe', 'Marketing', 75000);
Use Case: Generate realistic test data for development.
5. Configuration Data
Input CSV:
key,value,description
max_upload_size,10485760,Maximum file upload size in bytes
session_timeout,3600,Session timeout in seconds
Output SQL:
INSERT INTO config (key, value, description) VALUES ('max_upload_size', '10485760', 'Maximum file upload size in bytes');
INSERT INTO config (key, value, description) VALUES ('session_timeout', '3600', 'Session timeout in seconds');
Use Case: Populate application configuration table.
6. Lookup Tables
Input CSV:
country_code,country_name,continent
US,United States,North America
UK,United Kingdom,Europe
JP,Japan,Asia
Output SQL:
INSERT INTO countries (country_code, country_name, continent) VALUES ('US', 'United States', 'North America');
INSERT INTO countries (country_code, country_name, continent) VALUES ('UK', 'United Kingdom', 'Europe');
INSERT INTO countries (country_code, country_name, continent) VALUES ('JP', 'Japan', 'Asia');
Use Case: Populate reference/lookup tables.
Generation Options
Individual INSERT Statements
Each row becomes a separate INSERT statement:
INSERT INTO table_name (col1, col2) VALUES ('val1', 'val2');
INSERT INTO table_name (col1, col2) VALUES ('val3', 'val4');
Benefits:
- Each row can succeed/fail independently
- Easy to debug individual rows
- Can be executed one at a time
- Better error messages
Batch INSERT Statement
All rows combined into single INSERT:
INSERT INTO table_name (col1, col2)
VALUES
('val1', 'val2'),
('val3', 'val4');
Benefits:
- Faster execution (single transaction)
- Reduced network overhead
- More efficient for large datasets
- Atomic operation (all or nothing)
Features
Smart Data Type Detection
The tool automatically detects and formats data types:
- Numbers:
999.99β999.99(no quotes) - Strings:
Aliceβ'Alice'(quoted) - NULL values: Empty or NULL β
NULL(unquoted) - Booleans:
true/falseβTRUE/FALSE
SQL Injection Prevention
Safely escapes special characters:
- Single quotes:
O'Brienβ'O''Brien' - Prevents SQL injection attacks
- Safe for production use
Column Name Handling
With Header Row:
id,name,email β Used as column names
1,Alice,alice@example.com
Without Header Row:
1,Alice,alice@example.com β Generates column1, column2, column3
CSV Parsing
Handles complex CSV:
- Quoted values:
"Smith, John" - Escaped quotes:
"He said ""hello""" - Commas in values:
"New York, NY" - Empty cells (converted to NULL)
Database Compatibility
MySQL
INSERT INTO users (id, name) VALUES (1, 'Alice');
PostgreSQL
INSERT INTO users (id, name) VALUES (1, 'Alice');
SQLite
INSERT INTO users (id, name) VALUES (1, 'Alice');
SQL Server
INSERT INTO users (id, name) VALUES (1, 'Alice');
The generated SQL follows standard SQL syntax compatible with all major databases.
Best Practices
CSV Formatting:
Good CSV:
id,name,email
1,Alice,alice@example.com
2,Bob,bob@example.com
Consistent Structure:
- Each row must have same number of columns
- Empty cells should still have commas
- Column names should match database schema
Table Name Convention:
- Use lowercase with underscores:
user_accounts - Avoid spaces:
user accountsβ βuser_accountsβ - Match your database table name exactly
Large Datasets:
For large CSV files (1000+ rows):
- Use batch INSERT for better performance
- Consider breaking into smaller chunks
- Test with a subset first
- Use transactions for safety
Before Execution:
Always:
- Backup your database first
- Test on development database
- Verify column names match
- Check data types are correct
- Review generated SQL before running
Transaction Wrapper:
BEGIN TRANSACTION;
-- Your generated INSERT statements here
COMMIT;
-- Or ROLLBACK if something goes wrong
Troubleshooting
Issue: Column count doesn't match
Solution: Ensure each CSV row has the same number of columns:
id,name,email
1,Alice,alice@example.com
2,Bob,bob@example.com β (3 columns each)
id,name,email
1,Alice
2,Bob,bob@example.com β (inconsistent)
Issue: Syntax error in SQL
Solution: Check for special characters in data. The tool escapes quotes, but verify output before running.
Issue: NULL vs empty string
Solution:
- Empty CSV cell β
NULLin SQL - If you need empty string, use
""in CSV
Issue: Numbers appear as strings
Solution: Remove quotes from numeric values in CSV:
id,price
1,99.99 β (number)
1,"99.99" β (string)
Issue: Date format errors
Solution: Use database-compatible date format:
date
2024-01-15 β (ISO format)
01/15/2024 β (may fail in some databases)
Advanced Usage
Adding WHERE Conditions:
Convert to UPDATE statements:
-- Original INSERT
INSERT INTO users (id, name) VALUES (1, 'Alice');
-- Convert to UPDATE
UPDATE users SET name = 'Alice' WHERE id = 1;
Using with Transactions:
BEGIN;
INSERT INTO users (id, name)
VALUES
(1, 'Alice'),
(2, 'Bob');
-- Verify before committing
SELECT * FROM users WHERE id IN (1, 2);
COMMIT; -- or ROLLBACK
Combining with Other SQL:
-- Delete existing data first
DELETE FROM users WHERE id >= 1 AND id <= 100;
-- Then insert new data
INSERT INTO users (id, name) VALUES (1, 'Alice');
INSERT INTO users (id, name) VALUES (2, 'Bob');
Upsert Pattern (PostgreSQL):
INSERT INTO users (id, name, email)
VALUES (1, 'Alice', 'alice@example.com')
ON CONFLICT (id) DO UPDATE
SET name = EXCLUDED.name, email = EXCLUDED.email;
Upsert Pattern (MySQL):
INSERT INTO users (id, name, email)
VALUES (1, 'Alice', 'alice@example.com')
ON DUPLICATE KEY UPDATE
name = VALUES(name), email = VALUES(email);
Performance Tips
Batch Inserts:
- 10-100 rows: Use batch INSERT
- 100-1000 rows: Split into multiple batches
- 1000+ rows: Use database LOAD DATA or COPY command
Indexing:
-- Disable indexes before bulk insert
ALTER TABLE users DISABLE KEYS;
-- Run INSERT statements
INSERT INTO users ...
-- Re-enable indexes
ALTER TABLE users ENABLE KEYS;
Transactions:
-- Faster with transaction
BEGIN;
-- All INSERT statements
COMMIT;
Security Considerations
SQL Injection Protection:
The tool escapes single quotes automatically:
Input: O'Brien
Output: 'O''Brien' (safe)
Review Before Execution:
Always review generated SQL before running in production:
- Check for unexpected values
- Verify data types
- Confirm column mappings
- Test on development database first
Sensitive Data:
The tool runs entirely in browser:
- No data sent to servers
- No data stored
- Safe for sensitive information
- Client-side processing only
Integration Examples
MySQL Workbench:
-- Copy generated SQL and paste into SQL editor
INSERT INTO users (id, name) VALUES (1, 'Alice');
-- Execute (Ctrl+Enter or Run button)
PostgreSQL psql:
# Save generated SQL to file
psql -U username -d database -f inserts.sql
SQLite:
sqlite3 database.db < inserts.sql
Node.js:
const mysql = require('mysql2')
const connection = mysql.createConnection({ /* config */ })
const sql = `INSERT INTO users (id, name) VALUES (1, 'Alice');`
connection.query(sql, (err, results) => {
if (err) throw err
console.log('Inserted:', results.affectedRows)
})
Python:
import sqlite3
conn = sqlite3.connect('database.db')
cursor = conn.cursor()
sql = """INSERT INTO users (id, name) VALUES (1, 'Alice');"""
cursor.execute(sql)
conn.commit()
Tips & Tricks
- Use Examples: Click example buttons to see different data types
- Test Table Name: Use a test table first to verify syntax
- Batch for Speed: Enable batch INSERT for large datasets
- Review First: Always review SQL before executing
- Backup Database: Always backup before bulk inserts
- Start Small: Test with a few rows first
- Transaction Safety: Wrap in BEGIN/COMMIT for rollback option
- Check Types: Verify numbers aren't quoted as strings
- NULL Handling: Empty cells become NULL automatically
- Quote Escaping: Single quotes are automatically escaped
Frequently Asked Questions
Related Development Tools
JSON Formatter & Validator
FeaturedFormat, validate, and pretty-print JSON with our developer-friendly editor.
Use Tool βQR Code Generator
FeaturedCreate custom QR codes for URLs, text, and contact info
Use Tool βCSS Beautifier
Format messy CSS into clean, readable styles with consistent indentation and spacing. Perfect for cleaning up minified or poorly formatted stylesheets.
Use Tool βCSV Sorter
Sort CSV by columns - Order CSV rows by one or more columns in ascending or descending order with multi-level sorting support
Use Tool βTSV to CSV Converter
Convert TSV to CSV - Transform tab-separated values to comma-separated values with automatic quoting
Use Tool βCSV to TSV Converter
Convert CSV to TSV - Transform comma-separated values to tab-separated values with automatic quote removal
Use Tool βCSV Column Renamer
Rename CSV columns - Change CSV column headers and standardize naming conventions with camelCase, snake_case, or Title Case
Use Tool βHTTP Status Code Checker
Look up HTTP status codes and their meanings instantly. Understand error codes and how to fix them.
Use Tool βShare Your Feedback
Help us improve this tool by sharing your experience